Some Related Functions to Integer GCD and Coprimality
نویسنده
چکیده
We generalize a formula of B. Litow [7] and propose several new formula linked with the parallel Integer Coprimality, Integer GCD and Modular Inverse problems as well. Particularly, we find a new trigonometrical definition of the GCD of two integers a, b ≥ 1 : gcd(a, b) = 1 π ∫ π 0 cos[ (b− a)x ] sin (abx) sin(ax) sin(bx) dx. We also suggest a generalization of the GCD function to real numbers.
منابع مشابه
On the Coprimality of Some Arithmetic Functions
Let φ stand for the Euler function. Given a positive integer n, let σ(n) stand for the sum of the positive divisors of n and let τ(n) be the number of divisors of n. We obtain an asymptotic estimate for the counting function of the set {n : gcd(φ(n), τ(n)) = gcd(σ(n), τ(n)) = 1}. Moreover, setting l(n) := gcd(τ(n), τ(n+ 1)), we provide an asymptotic estimate for the size of #{n 6 x : l(n) = 1}.
متن کاملInteger Coprimality I S I N N C
We s h o w that determining whether two i n tegers are coprime is in NC. This can be seen as evidence that other integer GCD-related problems might b e i n N C .
متن کاملLower bounds for decision problems in imaginary, norm-Euclidean quadratic integer rings
We prove lower bounds for the complexity of deciding several relations in imaginary, normEuclidean quadratic integer rings, where computations are assumed to be relative to a basis of piecewise-linear operations. In particular, we establish lower bounds for deciding coprimality in these rings, which yield lower bounds for gcd computations. In each imaginary, norm-Euclidean quadratic integer rin...
متن کاملCounting Tuples Restricted by Pairwise Coprimality Conditions
Given a subset A of the set {1,. .. , v} 2 we say that (a 1 ,. .. , a v) exhibits pairwise coprimality over A if gcd(a i , a j) = 1 for all (i, j) ∈ A. For a given positive x and a given set A we give an asymptotic formula for the number of (a 1 ,. .. , a v) with 1 ≤ a 1 ,. .. , a v ≤ x that exhibit pairwise coprimality over A. This problem has been studied before by Hu.
متن کاملOn Relatively Prime Subsets, Combinatorial Identities, and Diophantine Equations
Let n be a positive integer and let A be a nonempty finite set of positive integers. We say that A is relatively prime if gcd(A) = 1, and that A is relatively prime to n if gcd(A, n) = 1. In this work we count the number of nonempty subsets of A that are relatively prime and the number of nonempty subsets of A that are relatively prime to n. Related formulas are also obtained for the number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 37 شماره
صفحات -
تاریخ انتشار 2011