Some Related Functions to Integer GCD and Coprimality

نویسنده

  • Sidi Mohamed Sedjelmaci
چکیده

We generalize a formula of B. Litow [7] and propose several new formula linked with the parallel Integer Coprimality, Integer GCD and Modular Inverse problems as well. Particularly, we find a new trigonometrical definition of the GCD of two integers a, b ≥ 1 : gcd(a, b) = 1 π ∫ π 0 cos[ (b− a)x ] sin (abx) sin(ax) sin(bx) dx. We also suggest a generalization of the GCD function to real numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Coprimality of Some Arithmetic Functions

Let φ stand for the Euler function. Given a positive integer n, let σ(n) stand for the sum of the positive divisors of n and let τ(n) be the number of divisors of n. We obtain an asymptotic estimate for the counting function of the set {n : gcd(φ(n), τ(n)) = gcd(σ(n), τ(n)) = 1}. Moreover, setting l(n) := gcd(τ(n), τ(n+ 1)), we provide an asymptotic estimate for the size of #{n 6 x : l(n) = 1}.

متن کامل

Integer Coprimality I S I N N C

We s h o w that determining whether two i n tegers are coprime is in NC. This can be seen as evidence that other integer GCD-related problems might b e i n N C .

متن کامل

Lower bounds for decision problems in imaginary, norm-Euclidean quadratic integer rings

We prove lower bounds for the complexity of deciding several relations in imaginary, normEuclidean quadratic integer rings, where computations are assumed to be relative to a basis of piecewise-linear operations. In particular, we establish lower bounds for deciding coprimality in these rings, which yield lower bounds for gcd computations. In each imaginary, norm-Euclidean quadratic integer rin...

متن کامل

Counting Tuples Restricted by Pairwise Coprimality Conditions

Given a subset A of the set {1,. .. , v} 2 we say that (a 1 ,. .. , a v) exhibits pairwise coprimality over A if gcd(a i , a j) = 1 for all (i, j) ∈ A. For a given positive x and a given set A we give an asymptotic formula for the number of (a 1 ,. .. , a v) with 1 ≤ a 1 ,. .. , a v ≤ x that exhibit pairwise coprimality over A. This problem has been studied before by Hu.

متن کامل

On Relatively Prime Subsets, Combinatorial Identities, and Diophantine Equations

Let n be a positive integer and let A be a nonempty finite set of positive integers. We say that A is relatively prime if gcd(A) = 1, and that A is relatively prime to n if gcd(A, n) = 1. In this work we count the number of nonempty subsets of A that are relatively prime and the number of nonempty subsets of A that are relatively prime to n. Related formulas are also obtained for the number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2011